Lookups are not (yet) all you need for deep learning inference

Background

MADDNESS (Blalock & Guttag, 2021) proposed matrix multiplication without multiplying.

- Accelerated AB, given training set \tilde{A} .
- Replaced dot-products with comparison-based hashing.
- Decomposed full dot-products into partial dot-products, each with its own codebook (Jegou et al., 2010).

Blalock, D., & Guttag, J. (2021). Multiplying matrices without multiplying. ICML. Jegou, H., Douze, M., & Schmid, C. (2010). Product quantization for nearest neighbor search. IEEE TPAMI.

Motivation

- Apply to deep learning inference:
- Accelerate $\sigma(AB)$ given training set \tilde{A} and weights **B**.
- Accelerate composition of layers $\sigma(\sigma(\sigma(AB_1)B_2)B_3)$

Our Approach

Partition to partial products via

 Learning rotation matrix and projecting onto space of permutation matrices.

- \circ Hierarchical clustering dimensions according to R^2 .
- Utilize knowledge of fixed weights **B** and activation/loss σ .
- Replace layers incrementally with fine-tuning.

Calvin McCarter[‡] calmcc@amazon.com

For a single layer, our method improves accuracy over MADNESS without any inference-time penalty.

Benefit of Intelligent Partitioning

Benefit of Utilizing Weights, Activation, & Loss

CIFAR100 (reproducing MADDNESS result)

Nicholas Dronen[‡] ndronen@amazon.com

Effect of Individual Layer Replacement on Accuracy

Effect of All-Layers Replacement on Accuracy

of Codeboo

Accuracy

Faster?

[‡]Work done prior to employment at Amazon.

But a network loses too much accuracy when lookup tables are faster than matrix multiplies.

oks	1	2	4	8	16
	36.1	36.3	52.0	70.5	84.9
	Yes	Yes	No	No	No

4-layer MLP for MNIST